An upper bound for the average number of regions
نویسندگان
چکیده
منابع مشابه
On trees attaining an upper bound on the total domination number
A total dominating set of a graph $G$ is a set $D$ of vertices of $G$ such that every vertex of $G$ has a neighbor in $D$. The total domination number of a graph $G$, denoted by $gamma_t(G)$, is~the minimum cardinality of a total dominating set of $G$. Chellali and Haynes [Total and paired-domination numbers of a tree, AKCE International ournal of Graphs and Combinatorics 1 (2004), 6...
متن کاملAn upper bound to the second Hankel functional for the class of gamma-starlike functions
The objective of this paper is to obtain an upper bound to the second Hankel determinant $|a_{2}a_{4}-a_{3}^{2}|$ for the function $f$, belonging to the class of Gamma-starlike functions, using Toeplitz determinants. The result presented here include two known results as their special cases.
متن کاملAn upper bound for the chromatic number of line graphs
It was conjectured by Reed [12] that for any graph G, the graph’s chromatic number χ(G) is bounded above by l ∆(G)+1+ω(G) 2 m , where ∆(G) and ω(G) are the maximum degree and clique number of G, respectively. In this paper we prove that this bound holds if G is the line graph of a multigraph. The proof yields a polynomial time algorithm that takes a line graph G and produces a colouring that ac...
متن کاملAn Upper Bound for the Number of Complete Mappings
A complete mapping on a set G with binary operation ◦ is a bijection θ : G → G such that the mapping η : G→ G defined by η(x) = x ◦ θ(x) is again a bijection. We give an asymptotic upper bound of exp{−0.08854n} for the proportion of permutations in Sn which form complete mappings under addition modulo n.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series B
سال: 1991
ISSN: 0095-8956
DOI: 10.1016/0095-8956(91)90063-p